CRYSTAL STRUCTURE OF THE DICARBONYL CATIONS cis- AND trans-$\left[\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right|^{+}\right.$AND THEIR REACTIONS WITH NUCLEOPHILES

G.A. CARRIEDO, J.B. PARRA SOTO, V. RIERA*
Departamento de Quimica Organometálica, Universidad de Oviedo, 33071 Oviedo (Spain)
M.L. VALÍN, D. MOREIRAS
Departamento de Geologia, Universidad de Oviedo, 33071 Oviedo (Spain)
and X. SOLANS
Departamento de Cristalografia y Mineralogia, Universidad de Barcelona, Gran Via 585, 08007 Barcelona (Spain)
(Received November 20th, 1986)

Abstract

Summary The crystal structures of the compounds cis- $\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right] \mathrm{Br} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}$ and trans- $\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right] \cdot \frac{1}{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ have been determined. The salt cis- $\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]$ was shown to react with KCN in the presence of the crown-ether 18 -Crown-6 in refluxing acetone to give the neutral complex cis, mer- $\left[\mathrm{Mn}(\mathrm{CN})(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right]$. This compound, its thiocyanate analogue cis,mer-[$\left.\mathrm{Mn}(\mathrm{NCS})(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right]$, and the unstable cationic dicarbonyl cis,mer- $\left[\mathrm{Mn}(\mathrm{NCMe})(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right]\left[\mathrm{ClO}_{4}\right]$ were prepared in good yield from cis,mer- $\left[\mathrm{MnBr}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right]$ and $\mathrm{TlX}(\mathrm{X}=\mathrm{CN}$ or NCS) or $\mathrm{TlClO}_{4} / \mathrm{MeCN}$, while the iodo derivative cis,mer-[$\mathrm{MnI}(\mathrm{CO})_{2}$ (dppm-$\left.\left.\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right]$ was made from $\mathrm{MnI}(\mathrm{CO})_{5}$ and dppm in refluxing toluene. Both cisand trans- $\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]$ reacted under UV irradiation at low temperature with $\mathrm{KX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{CN}, \mathrm{NCS})$ in the presence of 18 -Crown- 6 to give the neutral monocarbonyls trans- $\left[\mathrm{MnX}(\mathrm{CO})\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right]$, and with NCMe to give trans- $\left[\mathrm{Mn}(\mathrm{NCMe})(\mathrm{CO})\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]$. A qualitative study of the latter reactions showed that, in the case of the cis-dicarbonyl, the cation trans-$\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]$ and/or the neutral species cis,mer- $\left[\mathrm{MnX}(\mathrm{CO})_{2^{-}}\right.$ (dppm- $\left.\left.\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right]$, depending on X , were formed as intermediates.

Introduction

We previously described the preparation of several salts of the dicarbonyl cations cis- and trans- $\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right]^{+}(\mathrm{dppm}=\operatorname{bis}($ diphenylphosphinomethane $))$
and noted that the former reacted photochemically with Br to give trans-$\left[\mathrm{MnBr}(\mathrm{CO})\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right]$ in low yield [1]. In order to explore further the chemistry of these two dicarbonyls we have determined their X-ray crystal structure and studied their reactions with several nucleophiles such as $\mathrm{Cl}, ~ \mathrm{Br}, \mathrm{I}, \mathrm{CN}, \mathrm{SCN}$ or NCMe. This has led to the preparation in good yield of several complexes of the types cis,mer $\left[\mathrm{MnX}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right]$ and trans $\left[\mathrm{MnX}(\mathrm{CO})\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right]$.

Results and discussion

The molecular structures of the cations cis- and $\operatorname{transs}\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right]^{-}$ (I and II respectively), determined in the salts cis- $\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2} \mid \mathrm{Br}\right.$. $1 / 3 \mathrm{H}_{2} \mathrm{O}^{*}$ and trans $-\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right] \mathrm{ClO}_{4} \cdot \frac{1}{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. are shown in Figs. 1 to 4 . The relevant data are presented in Tables 1 to 6

In both cations the Mn atom has a distorted octahedral coordination. In I (the (is complex) the $\mathrm{P}(4)$ atom is $0.333(6) \AA$ from the mean plane of $\mathrm{Mn} . \mathrm{P}(1), \mathrm{P}(2)$. $C(51)$, and $P(2)$ is $0,304(6)$ A from the mean plane of $M n . P(3), P(4) . C(61)$ the

Fig. 1. Structure of cis $\left.-\mathrm{Mn}_{(} \mathrm{CO}\right)_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right) 1^{+}$(I), with atonic numbering.

[^0]

Fig. 2. A schematic view of 1 .

Fig. 3. Structure of trans- $\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right]^{+}$(II), with atomic numbering.
dihedral angle between these two planes is $91.0(2)^{\circ}$. In II (the trans complex) the Mn and the four phosphorus atoms are almost coplanar with a deviation from the mean plane of $-0.010(4)(\mathrm{Mn}), 0.036(4)(\mathrm{P}(1)),-0.031(4)(\mathrm{P}(2)), 0.036(4)(\mathrm{P}(3))$

Fig. 4. A schematic view of II.

TABLE I
FINAL ATOMIC COORDINATES ($\times 10^{5}$ FOR Mn; $\times 10^{4}$ FOR OTHFR ATOMS \mathcal{F} AND THERMAL PARAMETERS FOR co-[Mn(CO) $(\text { dppm-PP' })_{2} / \mathrm{Br} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}$

Atom	-	1	:	$B_{6,9}$
Mn	21208(12)	$1560(21)$	$9820(8)$	4.40451
P(1)	$1778(2)$	$83(4)$	$1571(1)$	4.9788
C(111)	$2288(10)$	$89(18)$	20075	606120
((112)	$2763(111$	$-686(18)$	2116	$\because 718$
(1113)	$3180412)$	…594(21)	246699)	4.37171
(1114)	$3098(14)$	207(27)	$2708(6)$	2.671701
(1115)	$2589(151$	953 (21)	$2588(9)$	8.55194
C(116)	22039	$897(20)$	$2254(6)$	6.4433
(121)	$1162(9)$	- 903318$)$	164165	S4711.1)
C(122)	$1294(12)$	$-1879(20)$	$1569(6)$	6.50(197)
(123)	$3862(16)$	-2606(19)	165097	$8.99183)$
C(124)	315(14)	- $2343(26)$	1826069	$8.86(180)$
C(125)	157(13)	--1371(24)	18879 ${ }^{189}$	$899(180)$
((126)	$591(12)$	$652(20)$	18274	$840(157$
C(12)	$1321(10)$	1311150	151761	748175
$\mathrm{P}(2)$	129543	1342(4)	10142	4878
(211)	$438(11)$	1049(18)	813%	299129
(1212)	2750(12)	$1016(22)$	465(8)	$9.39(180)$
(213)	- $382(15)$	$83823)$	-72(8)	10.95195
(214)	- 9238121	$77502)$	475.10)	4.97642
C(215)	-7709151	$751(38)$	8.34 (10)	16.68(312)
(216)	-98(10)	$111621)$	102588.	11.31206
C(221)	1361(9)	$2665(16)$	$891(6)$	$5886121)$
(1222)	1114 (11)	$3362(22)$	1098(8)	4.29173
(2223)	$1126(13)$	$4445(26)$	1010010	$1+2313$
C(224)	$1356(13)$	$4662(21)$	690412	8-960
C(225)	1605(19)	$4045(30)$	48.410	14.504277
C(226)	$1556(13)$	$291821)$	5620	9.97185
$\mathrm{P}(3)$	3108(2)	1074(4)	12232)	4.597
C(311)	$3598(11)$	$1703(17)$	0235	444113
C(312)	$3387(22)$	$2139(37)$	$674(11)$	23660.384
C(313)	$3649(29)$	2950(35)	4560.13	1991393)
C(314)	$4414(18)$	$2759(26)$	$479(8)$	17.7323)
C(315)	$4612(22)$	2261(35)	$709(13)$	24.41(409)
((316)	4321 (19)	1617(29)	$969(11)$	$10.501(240)$
((321)	3218(12)	1881(15)	162066	$4.68,113$
((322)	3696012)	$1631(17)$	19407)	$651(14)$
C(323)	$3783(12)$	$2273(23)$	$2262(7)$	$7.37(163)$
C(324)	$3346(21)$	$3112(28)$	22289	960924
C(325)	2946 (18)	$3439(20)$	1926610)	9.121206
C(326)	2833 (11)	275720	159368	913171
C(34)	35969 (8)	-65(1.3)	136665	4.8894,
$\mathrm{P}(4)$	3044(3)	$-907(4)$	106228	4.978
C(411)	34.38 (11)	$\cdots-1105(14)$	65963	5.49127
C(412)	$4186(11)$	- $1106(18)$	696(8)	$9.67(172)$
C(413)	$4447(13)$	-1322(22)	$364(\%)$	$9.02(185)$
C(414)	4074(17)	- 1631119$)$	604	$798188)$
C(415)	$3360(14)$	$-1628(15)$	$3(6)$	703149
C(416)	$3071(11)$	-1407(15)	$355(6)$	6.40 (13)
C(421)	$3085(10)$	--2119(16)	$1285(6)$	$0.28(123)$
C(422)	3655(13)	-233315)	1559(7)	6.911148

TABLE 1 (continued)

Atom	x	y	z	$B_{\text {eq }}$
$\mathrm{C}(423)$	$3774(17)$	$-3244(26)$	$1729(9)$	$10.70(231)$
$\mathrm{C}(424)$	$3257(21)$	$-4023(24)$	$1582(9)$	$9.82(221)$
$\mathrm{C}(425)$	$2704(15)$	$-3883(20)$	$1309(9)$	$9.27(183)$
$\mathrm{C}(426)$	$2627(10)$	$-2888(17)$	$1147(7)$	$7.28(137)$
$\mathrm{C}(51)$	$2195(8)$	$466(15)$	$529(6)$	$4.59(101)$
$\mathrm{O}(51)$	$2175(8)$	$660(11)$	$210(4)$	$7.67(97)$
$\mathrm{C}(61)$	$1535(9)$	$-753(16)$	$793(6)$	$5.01(116)$
$\mathrm{O}(61)$	$1177(7)$	$-1423(12)$	$672(4)$	$7.22(91)$
Br	$5266(3)$	$394(5)$	$6765(2)$	$10.26(41)$
Br	$407(3)$	$2466(5)$	$2132(2)$	$11.80(47)$
O_{w}	$0(0)$	$4994(34)$	$2500(0)$	$11.67(67)$

and $-0.031(4)(\mathrm{P}(4)) \AA$. The average $\mathrm{P}-\mathrm{Mn}-\mathrm{P}$ and $\mathrm{P}-\mathrm{C}-\mathrm{P}$ angles of the dppm ligands for the cis isomer (70.5 and 94.4°) and for the trans isomer ($73.2,94.7^{\circ}$) are well within the range encountered in complexes with other chelated dppm [2-4], but, whereas in the cis isomer the two $\mathrm{MnP}_{2} \mathrm{C}$ rings are not coplanar, with dihedral angles between the planes MnP_{2} and CP_{2} of ca. $15^{\circ}\left(\mathrm{P}(2)-\mathrm{Mn}-\mathrm{P}(1)-\mathrm{C}(12)-13.9^{\circ}\right.$, $\left.\mathrm{P}(4)-\mathrm{Mn}-\mathrm{P}(3)-\mathrm{C}(34)-16.3^{\circ}\right)$, one of the rings in the trans has a very similar dihedral angle $\left(\mathrm{P}(4)-\mathrm{Mn}-\mathrm{P}(3)-\mathrm{C}(34)-14.2^{\circ}\right)$ and the other is closer to planar $\left(\mathrm{P}(2)-\mathrm{Mn}-\mathrm{P}(1)-\mathrm{C}(12) 4.9^{\circ}\right)$. It is likely that this effect is caused by packing forces.

The Mn-P distances in both isomers are similar to those observed in other manganese-phosphine complexes [5], but in I there are significant variations as a function of the ligand trans to the phosphorus atom. Thus, when the trans ligand is

TABLE 2
MAIN BOND LENGTHS (\AA) FOR cis- $\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right] \mathrm{Br} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}$

$\mathrm{P}(1)-\mathrm{Mn}$	$2.387(6)$
$\mathrm{P}(2)-\mathrm{Mn}$	$2.306(6)$
$\mathrm{P}(3)-\mathrm{Mn}$	$2.370(5)$
$\mathrm{P}(4)-\mathrm{Mn}$	$2.308(6)$
$\mathrm{C}(51)-\mathrm{Mn}$	$1.750(21)$
$\mathrm{C}(61)-\mathrm{Mn}$	$1.749(19)$
$\mathrm{C}(111)-\mathrm{P}(1)$	$1.756(19)$
$\mathrm{C}(121)-\mathrm{P}(1)$	$1.849(22)$
$\mathrm{C}(12)-\mathrm{P}(1)$	$1.869(20)$
$\mathrm{P}(2)-\mathrm{C}(12)$	$1.845(22)$
$\mathrm{C}(211)-\mathrm{P}(2)$	$1.798(22)$
$\mathrm{C}(221)-\mathrm{P}(2)$	$1.831(22)$
$\mathrm{C}(311)-\mathrm{P}(3)$	$1.801(22)$
$\mathrm{C}(321)-\mathrm{P}(3)$	$1.801(21)$
$\mathrm{C}(34)-\mathrm{P}(3)$	$1.835(17)$
$\mathrm{P}(4)-\mathrm{C}(34)$	$1.824(17)$
$\mathrm{C}(411)-\mathrm{P}(4)$	$1.813(23)$
$\mathrm{C}(421)-\mathrm{P}(4)$	$1.807(22)$
$\mathrm{O}(51)-\mathrm{C}(51)$	$1.198(26)$
$\mathrm{O}(61)-\mathrm{C}(61)$	$1.185(26)$

TABLE 3

$\mathrm{P}(2) \mathrm{Mn} \mathrm{P}(1)$	70.4(2)
$P(3)-M n-P(1)$	$91.5(2)$
$P(3)-\mathrm{Mn}_{1}-P(2)$	100.8(2)
$\mathrm{P}(4)-\mathrm{Mn} \ldots \mathrm{P}(1)$	$101.72)$
$P(4)-\mathrm{Mn}-\mathrm{P}(2)$	168.6(2)
$P(4) \ldots \mathrm{Mn} P(3)$	$70.6(2)$
C(5) Mn-P(1)	$163.9(6)$
C(51)-Mn-P(2)	93.516)
C(51)-Mn-P(3)	$92.3(6)$
C(51) Mn P(4)	94.7 (6)
(61)-Mn-P(1)	93.4(7)
C(6) - $\mathrm{Mn}-\mathrm{P}(2)$	93.2171
$C(61)-\mathrm{Mn}-\mathrm{P}(3)$	160.04?
$C(6)-M n \cdots P(4)$	$95.57)$
C(61)-Mn-C151)	86.699
$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{Mn}$	$94.37)$
$\mathrm{P}(2)-\mathrm{C}(12)-\mathrm{P}(1)$	93.5101
C(12)-P(2)-Mn	$97.76{ }^{\text {a }}$
$\mathrm{C}(34)-\mathrm{P}(3)-\mathrm{Mn}$	93.045
$\mathrm{P}(4) \cdots \mathrm{C}(34)-\mathrm{P}(3)$	$953(8)$
C(34)-P(4)-Mn	95.466
O(51)-C(51)-Mn	173.3(15)
$\mathrm{O}(61)-\mathrm{C}(61)-\mathrm{Mn}$	$171.515)$

CO, the $\mathrm{Mn}-\mathrm{P}$ bond lengths average $2.378(8) \mathrm{A}$, while the corresponding value for the $\mathrm{Mn}-\mathrm{P}$ bond trans to a PPh_{2} group is 2.307 (1) A (0.07 A shorter). The latter distance is very close to the average $\mathrm{Mn} \cdots \mathrm{P}$ bond length in the trans isomer (II) (2.298(12) A). Those effects are consistent with the observations made on complexes of the type trans $-\left[\mathrm{Cr}(\mathrm{CO})_{4} \mathrm{LL}^{\prime}\right]\left\{\mathrm{L}=\mathrm{PPh}_{3} . \mathrm{P}(\mathrm{OPh})_{3}, \mathrm{~L}^{\prime}=\mathrm{CO} . \mathrm{PR}_{3} . \mathrm{P}(\mathrm{OR})_{3}\right)$ [6] and it may thus be possible that there is significant π-bonding between the Mn^{1} and the dppm ligand in the dicarbonyl cations. In this case the shorter Mn-P bonds in I could be rationalized in terms of the change in the π-bonding ability of a PPh_{2} group depending on whether the ligand trans to it is CO or another PPhz, as was suggested to account for the short $\mathrm{Cr}-\mathrm{P}(\mathrm{OPh})_{3}$ bond in the complex trats$\left[\mathrm{Cr}(\mathrm{CO})_{4}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{2}\right][7]$.

On the other hand, the Mn-P bond distances may also be affected, directly or indirectly, by steric effects, as in the complexes cis- $\left[\mathrm{MO}(\mathrm{CO})_{4}\left(\mathrm{PR}_{3}\right),\right][8]$. This could be more significant for the cis isomer I , in which the angles $\mathrm{P}(1) \mathrm{Mn} \mathrm{P}(4)$ and $\mathrm{P}(2)-\mathrm{Mn}-\mathrm{P}(3)$ are ca. 101°, a value close to those in cis-[$\left.\mathrm{Mo}(\mathrm{CO})_{+}(\mathrm{PR})_{2}\right]_{\text {. }}$ where they are thought to imply considerable steric interaction between the phosphine ligands which affects the M - P bonds [8]. In fact the distortions observed in the cis isomer (I) are in accord with those expected on the basis of Keppert's repulsion model for cis-[M(chelate) $\left.)_{2}(\text { monodentate })_{2}\right]^{2+}$ species [9] (Table 7), which predicts two Ionger $\mathrm{Mn}-\mathrm{P}$ bonds $(\mathrm{Mn}-\mathrm{P}(1)$ and $\mathrm{Mn}-\mathrm{P}(2)$). The distortions observed in the trans isomer (II) are also in good agreement with the prediction of the model (Table 7). All the observed $\mathrm{Mn}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ distances (Tables 2 and 5) are normal.

As noted previously [1], the cation II isomerizes on heating to the thermodynamically more stable isomer I (reaction i in Scheme 1). It is known that the relative

TABLE 4
FINAL ATOMIC COORDINATES ($\times 10^{5}$ FOR Mn; $\times 10^{4}$ FOR OTHER ATOMS) AND THERMAL PARAMETERS FOR trans-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right] \mathrm{ClO}_{4} \cdot{ }_{2}^{1} \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Atom	x	y	z	$B_{\text {eq }}$
$\overline{\mathrm{Mn}}$	33296(8)	3670 (0)	74198(17)	2.67 (7)
$\mathrm{P}(1)$	4069(2)	-354(2)	8024(3)	2.97 (15)
$\mathrm{P}(2)$	3720(2)	838(2)	9076(3)	$3.09(14)$
C(101)	3880(6)	-1249(8)	8391(13)	$3.40(66)$
C(102)	3955(7)	- 1742(8)	7567(16)	4.75 (78)
C(103)	3771(7)	-2416(8)	7751(15)	4.96 (81)
C(104)	3503(8)	-2568(8)	8828(17)	$5.39(92)$
C(105)	3451(8)	-2090(9)	$9677(16)$	5.78(97)
$\mathrm{C}(106)$	3602(8)	- 1434(9)	9458(15)	$5.05(87)$
C(111)	4774(5)	-409(7)	7263(12)	3.43 (62)
C(112)	5317(6)	-469(8)	7887(13)	4.13(71)
$\mathrm{C}(113)$	5851(6)	-489(8)	7290(15)	4.59(77)
C(114)	5831(7)	-502(8)	6061(17)	$5.59(90)$
C(115)	5301(7)	-460(8)	5434(14)	4.54(77)
C(116)	4798(6)	-422(8)	6011(13)	$4.23(73)$
$\mathrm{C}(12)$	4223(6)	126(7)	9389(12)	3.75 (67)
C(201)	3228(5)	951(8)	10336(11)	$3.32(61)$
C(202)	3043(6)	389(10)	11014(11)	4.54(70)
C(203)	2595(10)	490(13)	11852(15)	6.88(116)
C(204)	2341(9)	1124(13)	11985(17)	6.88(113)
C(205)	2522(7)	1680(10)	11313(16)	5.79 (92)
C(206)	2964(7)	1600(8)	10490(14)	4.84(80)
C(211)	4191(5)	1616(7)	9120(11)	3.18 (59)
C(212)	4137(6)	2107(8)	8311(15)	$3.89(75)$
C(213)	4509(8)	2709(9)	8326(16)	5.32(92)
C(214)	4908(7)	2800(10)	9225(16)	5.13 (89)
C(215)	4954(8)	2307(10)	10038(17)	5.64(95)
$\mathrm{C}(216)$	4603(6)	1710(9)	10021(13)	4.76 (81)
$\mathrm{P}(3)$	2609(2)	1122(2)	6766(3)	2.87(14)
P (4)	2919(2)	-107(2)	5775(3)	2.99 (15)
C(301)	1875(6)	1151(7)	7396(12)	$3.37(61)$
C(302)	1356(7)	1261(9)	6701(16)	5.04(86)
C(303)	817(7)	1359(10)	7213(18)	5.72(99)
C(304)	$770(9)$	1332(10)	8404(18)	6.04(106)
C(305)	1252(8)	1208(10)	9096(17)	5.47(93)
C(306)	1813(6)	1127(8)	8589(12)	3.73(67)
C(311)	2745(6)	2043(7)	6512(12)	3.04(60)
C(312)	2573(7)	2516(8)	7369(13)	4.36 (73)
C(313)	2718(7)	3213(9)	7224(17)	5.76 (94)
C(314)	8053(8)	3406(10)	8726(17)	5.62(98)
C(315)	8231(8)	2973(9)	9562(18)	$5.69(96)$
C(316)	3066(7)	2261(9)	5577(15)	4.94(85)
C(34)	2539(6)	723(7)	5307(12)	3.43 (64)
C(401)	2324(6)	-753(7)	5875(13)	3.33(65)
C(402)	1874(6)	-753(8)	5064(13)	3.96 (72)
C(403)	1440(8)	- 1257(9)	5130(17)	5.81 (98)
C(404)	1449(7)	-1742(8)	5973(17)	5.20 (87)
$\mathrm{C}(405)$	1913(7)	-1747(8)	6767(17)	4.92(83)
C(406)	2332(7)	-1274(8)	6717(13)	$3.95(71)$
C(411)	3359(7)	-430(9)	4550(12)	4.50 (74)
C(412)	3441(8)	-1157(10)	4393(17)	6.08(103)

TABLE 4 (continued)

Atom	x	!	$=$	$B_{\text {c }}$
C(413)	3860(12)	$-1354(15)$	$3470(24)$	12.42 (192)
C(414)	5783(9)	4052(13)	7120(21)	$8.1221126)$
C(415)	$5885(8)$	$4733(17)$	7014 (1d)	8.604123
C(116)	$3687(8)$	48(12)	3878015	6,41105
(1)	3867(6)	$825(8)$	6523(12)	$3.16661)$
Of1)	4206(5)	$1115(6)$	5947 (10)	504660
C(2)	$2792(6)$	$79(8)$	8351912	3.40669
O(2)	$2459(5)$	- 357(7)	894099	4.7865
Cl	757(2)	3223)	$3115(4)$	5.2419
O(3)	348(8)	--53(14)	3711018;	14.60t103,
O(4)	1051(10)	-195(11)	2556(18)	13.201433
O(5)	1168(9)	$607(9)$	3850017)	12.61035
$\mathrm{O}(6)$	486(12)	740(12)	2329829	17250160
(l)	$9030(4)$	1821(5)	$2018(6)$	386484
(1)	9846(5)	2584(5)	$518(9)$	6.20436
C	9768(14)	2031(26)	$1367(32)$	$0.91922)$

stability of the cis and trans isomeric forms in carbonyl-phosphine complexes depends on electronic and steric factors [10] and various theoretical analyses have shown that for species $\left[\mathrm{M}(\mathrm{CO})_{2} \mathrm{~L}_{4}\right](\mathrm{L}=$ lesser π-accepting ligand than CO$)$ the electronic effects favour the cas form [11]. The discussion of the preference in terms of repulsion factors for the $[M \text { (chelate })_{2}$ (monodentate) $)_{2}{ }^{+}$species is more complex because normalized bites as well as the degree of asymmetry have to be considered [9].

Table 5
MAIN BOND LENGTHS (A) FOR irans- $-\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}^{2}-\mathrm{PP}^{\prime}\right)_{2} \mathrm{IClO}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$

$\mathrm{P}(1)-\mathrm{Mn}$	$2.290(4)$
$\mathrm{P}(2)-\mathrm{Mn}$	$2.287(4)$
$\mathrm{\Gamma}(3)-\mathrm{Mn}$	$2.318(4)$
$\mathrm{P}(4)-\mathrm{Mn}$	$2.297(4)$
$\mathrm{C}(1)-\mathrm{Mn}$	$1.824(14)$
$\mathrm{C}(2)-\mathrm{Mn}$	$1.835(15)$
$\mathrm{C}(101) \mathrm{P}(1)$	$1.844(15)$
$\mathrm{C}(111) \mathrm{P}(1)$	$1.818(13)$
$\mathrm{C}(12)-\mathrm{P}(1)$	$1.857(14)$
$\mathrm{C}(12)-\mathrm{P}(2)$	$1.829(14)$
$\mathrm{C}(201) \mathrm{P}(2)$	$1.835(13)$
$\mathrm{C}(211)-\mathrm{P}(2)$	$1.853(14)$
$\mathrm{C}(301)-\mathrm{P}(3)$	$1.808(14)$
$\mathrm{C}(311)-\mathrm{P}(3)$	$1.845(13)$
$\mathrm{C}(34)-\mathrm{P}(3)$	$1.853(14)$
$\mathrm{C}(34)-\mathrm{P}(4)$	$1.910(14)$
$\mathrm{C}(401)-\mathrm{P}(4)$	$1.844(14)$
$\mathrm{C}(411)-\mathrm{P}(4)$	$1.832(15)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.158(18)$
$\mathrm{O}(2)-\mathrm{C}(2)$	$1.147(18)$

TABLE 6
MAIN BOND ANGLES (${ }^{\circ}$) FOR trans-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right] \mathrm{ClO}_{4} \cdot \frac{1}{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$

$\mathrm{P}(2)-\mathrm{Mn}-\mathrm{P}(1)$	$73.4(1)$
$\mathrm{P}(3)-\mathrm{Mn}-\mathrm{P}(1)$	$177.7(1)$
$\mathrm{P}(3)-\mathrm{Mn}-\mathrm{P}(2)$	$106.5(1)$
$\mathrm{P}(4)-\mathrm{Mn}-\mathrm{P}(1)$	$107.2(1)$
$\mathrm{P}(4)-\mathrm{Mn}-\mathrm{P}(2)$	$178.8(2)$
$\mathrm{P}(4)-\mathrm{Mn}-\mathrm{P}(3)$	$73.0(1)$
$\mathrm{C}(1)-\mathrm{Mn}-\mathrm{P}(1)$	$89.3(5)$
$\mathrm{C}(1)-\mathrm{Mn}-\mathrm{P}(2)$	$90.9(4)$
$\mathrm{C}(1)-\mathrm{Mn}-\mathrm{P}(3)$	$88.4(5)$
$\mathrm{C}(1)-\mathrm{Mn}-\mathrm{P}(4)$	$90.1(4)$
$\mathrm{C}(2)-\mathrm{Mn}-\mathrm{P}(1)$	$90.9(5)$
$\mathrm{C}(2)-\mathrm{Mn}-\mathrm{P}(2)$	$87.8(5)$
$\mathrm{C}(2)-\mathrm{Mn}-\mathrm{P}(3)$	$91.4(5)$
$\mathrm{C}(2)-\mathrm{Mn}-\mathrm{P}(4)$	$91.2(5)$
$\mathrm{C}(2)-\mathrm{Mn}-\mathrm{C}(1)$	$178.6(7)$
$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{Mn}$	$94.7(4)$
$\mathrm{C}(12)-\mathrm{P}(2)-\mathrm{Mn}$	$95.6(5)$
$\mathrm{P}(2)-\mathrm{C}(12)-\mathrm{P}(1)$	$95.8(6)$
$\mathrm{C}(34)-\mathrm{P}(3)-\mathrm{Mn}$	$94.9(5)$
$\mathrm{C}(34)-\mathrm{P}(4)-\mathrm{Mn}$	$94.1(4)$
$\mathrm{P}(4)-\mathrm{C}(34)-\mathrm{P}(3)$	$93.6(6)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{Mn}$	$179.6(10)$
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{Mn}$	$179.4(12)$

The difference between the two types of $\mathrm{Mn}-\mathrm{P}$ bonds in I suggested that under nucleophilic attack the PPh_{2} groups of the dppm ligand with the longer $\mathrm{Mn}-\mathbf{P}$ distance might be displaced. In keeping with this, the reaction of the salt cis-$\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]$ with KCN in refluxing acetone, in the presence of the crown-ether 18 -Crown-6 (see reaction iia in Scheme 1) gave a good yield of the neutral species cis,mer- $\left[\mathrm{Mn}(\mathrm{CN})(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right]$ (IIIa) in which one dppm is monodentate. The structure proposed for IIIa is consistent with the analytical and spectroscopic data (Tables 8 and 9). Further support came from its synthesis (also in good yield) from the previously known cis,mer-$\left[\mathrm{MnBr}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right][1]$ which has the structure shown in Scheme 1)

TABLE 7
STEREOCHEMICAL PARAMETERS FOR THE CATIONS cis- AND trans-[Mn(CO) $\left.)_{2}\left(\mathrm{dppm}-\mathrm{PF}^{\prime}\right)_{2}\right]^{+}$

	ϕ_{A}	ϕ_{B}	ϕ_{E}	θ_{A}	$\boldsymbol{\theta}_{\mathrm{B}}$
cis-Isomer (I)					
Exp.	99	134	45	5	-64
Calc. ${ }^{a}$	95	134	43	0	-67
trans-Isomer (II)					
Exp.	54	127	89		
Calc. ${ }^{b}$	54	127	91		
a					

[^1]

SCHEME 1. (i) Refluxing toluene or acetone; (iia) with KCN and 18 -Crown-6 in refluxing acetone: (iih) in refluxing toluene; (iii) with TIX in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iv) as in iia.
and TlCN in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, a reaction that can be expected to occur with retention of the stereochemistry (iii in Scheme 1). The analogous complex cis,mer-[Mn(NCS)-$\left.(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right]$ (IIIb) was similarly prepared in good yield from TINCS *, while the iodo derivative cis,mer-[$\left.\mathrm{MnI}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right]$ (IIIc) was made refluxing in toluene $\left[\mathrm{MnI}(\mathrm{CO})_{5}\right]$ and $\mathrm{dppm} * *$ in the way used for the bromo [1] and chloro [12] analogues. Similar to reaction iif (Scheme 1). sis.mer-$\left[\mathrm{MnBr}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right]$ reacted with TlClO_{4} and MeCN in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the salt cis,mer- $\left[\mathrm{Mn}\left(\mathrm{NCMe}^{2}\right)(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right]\left[\mathrm{ClO}_{4}\right]$. (IHd), which in solution in the absence of MeCN gives cis- $\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]$ by displacement of the coordinated MeCN by the free PPh_{2} group of the monodentate dppm.

No reaction was observed between the perchlorate salt of I and KCN in the absence of the crown-ether, indicating that the higher concentration and or exalted nucleophilicity of the CN^{-}in the reaction mixture may be important.

The cis- $\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\left[\mathrm{ClO}_{4}\right]\right.$ did not react with the potassium salts KX for $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ or NCS in refluxing acetone to give III even in the presence of the crown-ether. It has previously been reported that heating the neutral species III for $\mathrm{X}=\mathrm{Br}$ (or $\mathrm{Cl}[12]$) in refluxing toluene results in the formation of the corresponding

[^2]TABLE 8
MELTING POINTS, ANALYTICAL AND IR DATA FOR THE COMPLEXES

Compound	$\begin{aligned} & \text { M.p. }{ }^{a} \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Analysis (Found (calc.) (\%))			$\mathrm{IR}^{\text {b }}\left(\mathrm{cm}^{-1}\right)$	
		C	H	N	$\boldsymbol{\nu}(\mathrm{CN})$	$\nu(\mathrm{CO})$
cis,mer- $\left[\mathrm{Mn}(\mathrm{CN})(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (IIIa)	176	$\begin{gathered} 65.2 \\ (65.9) \end{gathered}$	$\begin{gathered} 4.65 \\ (4.62) \end{gathered}$	$\begin{gathered} 1.48 \\ (1.40) \end{gathered}$	2092	1946s, 1888s
$\begin{aligned} & c i s, m e r-\left[\mathrm{Mn}(\mathrm{NCS})(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right] \\ & (\mathrm{IIIb}) \end{aligned}$	179	$\begin{aligned} & 68.1 \\ & (67.9) \end{aligned}$	$\begin{gathered} 4.79 \\ (4.73) \end{gathered}$	$\begin{gathered} 1.53 \\ (1.49) \end{gathered}$	2099	1946s, 1878s
cis,mer- $\left[\mathrm{MnI}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right] \cdot{ }_{2}^{1} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (IIIc)	165	$\begin{gathered} 60.4 \\ (60.1) \end{gathered}$	$\begin{gathered} 4.32 \\ (4.32) \end{gathered}$			1937s, 1862s
$\begin{aligned} & c i s, m e r-\left[\mathrm{Mn}(\mathrm{NCMe})(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right]\left[\mathrm{ClO}_{4}\right]^{c} \\ & \text { (IIId) } \end{aligned}$	$270{ }^{\text {d }}$	$\begin{gathered} 63.8 \\ (63.6) \end{gathered}$	$\begin{gathered} 4.72 \\ (4.64) \end{gathered}$	$\begin{gathered} 1.30 \\ (1.37) \end{gathered}$		1959s, 1892 s
$\begin{aligned} & \text { trans }-\left[\mathrm{MnCl}(\mathrm{CO})\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right] \\ & \quad(\mathrm{IVa}) \end{aligned}$	165	$\begin{gathered} 62.2 \\ (62.6) \end{gathered}$	$\begin{gathered} 4.83 \\ (4.53) \end{gathered}$			1850s
$\begin{aligned} & \operatorname{trans}-\left[\mathrm { MnI } (\mathrm { CO }) \left(\mathrm{dppm}^{\left.\left.\left.-\mathrm{PP}^{\prime}\right)_{2}\right)\right]}\right.\right. \\ & (\mathrm{IVv}) \end{aligned}$	155	$\begin{gathered} 67.3 \\ (66.5) \end{gathered}$	$\begin{gathered} 4.89 \\ (4.88) \end{gathered}$			1832s

[^3]TABLE 9
${ }^{31} \mathrm{PNMR}$ DATA ${ }^{a}$

Compound	X or L .	$\delta(\mathrm{P})$	$\delta(\mathrm{P}(1))$	$\delta(P(2))$	$\delta(\mathrm{P}(3))$	$\delta(P(4)$	J_{4}
ris,mer-[MnX(CO) ${ }_{2}$ (dppm-PP')							
$(\mathrm{dppm}-\mathrm{P}))^{\text {? }}$	$\mathrm{Br}^{\text {a }}$		-1.6	35,6	49.1	-36.2	19
	f		--0.2	34	$4]$	- - - 0	29
	CN		13	42	5%	-259	29
	NCS		5	35	54	-280	32
cis,mer-[$\mathrm{MnL}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)$							
$(\mathrm{dppm}-\mathrm{P})]\left(\mathrm{ClO} \mathrm{O}_{4}\right)$	NCMe		11	40	57	$\cdots 2.4$	49
	(0)		10	30	49	-2. 270	57
trans-[MnX(CO)(dppm-PP') $\left.\mathbf{z}^{\prime}\right]$	Cl	36.2					
	Br ${ }^{\text {- }}$	34.4					
	1	31.6					

" Proton decoupled. Measured in CDCl_{3}, solution at room temperature, with positive shifts to high field of external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4} . \delta$ in $\mathrm{ppm} . /(\mathrm{PP})$ in H_{2}. ${ }^{1}$ The signals from the phosphores atoms 1.2 and 3 are hroad unresolved multiplets and onty the center is quoted. Sharp doublet. "From ref. "From ret. 4
salt of I (iib in Scheme 1). In contrast, the thiocyanate derivative IIIb remained unchanged, and a complex decomposition took place for $\mathrm{X}=\mathrm{I}$.

The perchlorate of the trans-dicarbonyl cation (II) reacted in refluxing acetone with KX in the presence of 18 -Crown-6. only for $\mathrm{X}=\mathrm{CN}$ to give IIta iv in Scheme 1), but monitoring of the reaction by IR showed that the attack of the (N was. in fact, on the cis isomer I formed by isomerization of II, as indicated for the process : in the Scheme 1.

Under low temperature UV irradiation the cis dicarbonyl [$\mathrm{Mn}(\mathrm{CO})_{2}$ (dppm$\left.\left.\mathrm{PP}^{\prime}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]$ reacted with KX for $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{CN}$ or NCS in the presence of 18-Crown-6 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the neutral monocarbonyls trans-[MnX $(\mathrm{CO})(\mathrm{dppm}-$ $\left.\mathrm{PP}^{\prime}\right)_{2}$] (IV) in $40-50 \%$ yields (reaction i in Scheme 2). Similarly, the reaction with NCMe gave good yields of the previously reported [13] trans-[Mn(NCMe)$\left.(\mathrm{CO})\left(d p p m-\mathrm{PP}^{\prime}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]$. The compounds iv with $\mathrm{X}=\mathrm{CN}$ or NCS have been prepared previously [4], but in much poorer yield. starting from the long known trans- $\left[\mathrm{MnBr}(\mathrm{CO})\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right][14]$.

Monitoring of reaction i (Scheme 2) by IR revealed that in the case of $X=\mathrm{CN}$. the dicarbonyls II and III are intermediates in the formation of IV. whereas only the cation Il was clearly observed in the other cases. Other experiments showed that the irradiation (from the same UV source) of the perchlorate salt of II with KX and 18-Crown-6 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (iii in Scheme 2) and of the neutral species 111 (v in Scheme 2) also gave IV, which subsequently decomposed slowly on prolonged irradiation to as yet unidentified products (vi in Scheme 2). Although the experiments allowed no reliable comparison of the relative rates of the reactions of Scheme 2, it appeared that those of i and iii were very similar and slightly fower than those of ii and v. while variations as X was changed were insignificant in all cases. Thus. in the

SCHEME 2. (i) $h \nu$ with $\mathrm{KX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{CN}, \mathrm{NCS})+18$-Crown-6 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(-15^{\circ} \mathrm{C}\right)$; (ii) $h \nu$; (iii) As in (i); (iv) as in i; (v) $h \nu$; (vi) $h \nu$ to unknown products.
photochemical reactions, only for $\mathrm{X}=\mathrm{CN}^{-}$is there clear evidence of attack on the cation I with formation of III as intermediate (reaction iv in Scheme 2) as observed in the thermal process. However, the data do not permit a firm conclusion concerning the relative contribution of the paths 1 (ii +iii) and 2 (iv +v) to reaction i (Scheme 2).

Experimental

All reactions were carried out under dry argon. The IR spectra were recorded with a Perkin-Elmer 298 spectrometer and calibrated with reference to the 1602 cm^{-1} band of polystyrene. The NMR spectra were recorded with a Varian FT-80A.

The compound cis- $\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right] \mathrm{Br}$ was prepared as described elsewhere [1], and crystals suitable for X-ray diffraction were obtained by the liquid diffusion method [15] using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane. The crystals of trans- $\left[\mathrm{Mn}(\mathrm{CO})_{2^{-}}\right.$ (dppm- $\left.\left.\mathrm{PP}^{\prime}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right][1]$ were obtained similarly from $\mathrm{Cl}_{2} \mathrm{CH}_{2} /$ hexane.

The compounds $\left[\mathrm{MnI}(\mathrm{CO})_{5}\right][16]$, cis, mer $-\left[\mathrm{MnBr}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right][1]$, TICN and TINCS [17] were made as previously described.

Preparation of cis,mer-[Mn(CN)(CO) $\left.)_{2}\left(d p p m-P P^{\prime}\right)(d p p m-P)\right](I H a)$
(a) A mixture of cis-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right](0.153 \mathrm{~g}, 0.1596 \mathrm{mmol}), \mathrm{KCN}$ $(0.026 \mathrm{~g}, 0.399 \mathrm{mmol})$ and 18 -Crown-6 ($0.2 \mathrm{~g}, 0.479 \mathrm{mmol}$), and acetone (30 ml) was refluxed for 6 h in the absence of light. The resulting solution was filtered (Celite), the volatiles were removed in vacuo, and the oily residue was washed with water $(2 \times 50 \mathrm{ml})$. The solid formed was dissolved in toluene (30 ml), and the solution was filtered, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to give IIIa as a yellow solid (0.11 g , 80%).
(b) The compounds cis,mer $-\left[\mathrm{MnBr}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right](0.7 \mathrm{~g}, 0.729$ $\mathrm{mmol})$ and $\mathrm{TlCN}(0.20 \mathrm{~g}, 0.868 \mathrm{mmol})$ were stirred with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ for 2 h at room temperature. The mixture was filtered and evaporated in vacuo, to leave a solid, which was washed twice with hexane (30 m). Recrystallization from a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, solution at $-10^{\circ} \mathrm{C}$ gave crystalline Mas as the $\mathrm{CH}, \mathrm{Cl}_{\text {. }}$. solvate $(0,59 \mathrm{~g} .89 \%)$.

Preparation of cis,mer- $\left[\mathrm{Mn}(\mathrm{NCS})(\mathrm{CO})_{2}\left(d p p m-P P^{\prime}\right)(d p p m-P)\right]$ (IIhh)
A mixture of cis, mer- $\left[\mathrm{MnBr}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right](0.5 \mathrm{~g} .0 .52 \mathrm{mmol})$ TINCS $(0.164 \mathrm{~g}, 0.625 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ was refluxed for 4 h then filtered. The filtrate was dried in vacuo and the residue was washed twice with hexane $(30$ $\mathrm{ml})$ to give a yellow solid ($0.43 \mathrm{~g} .88 \%$) Which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane.

Preparation of cis,mer-[Mnl(CO) $)_{2}\left(d p p m-P P^{\prime}\right)($ dppm-P)] (IIle)

A mixture of $\left[\mathrm{Mn}\left[(\mathrm{CO})_{6}\right](0.5 \mathrm{~g} .1 .553 \mathrm{mmol})\right.$ and dppin 0.675 g .1 .756 mmol$)$. and toluene (50 ml) was refluxed for 1 h then cooled to room temperature. More dppm (0.675 g .1 .756 mmol) was added and refluxing was continued for another 8 h . The solution was then filtered, concentrated in vacuo to ca. 10 ml . and cooled to $-10^{\circ} \mathrm{C}$. The precipitate formed was redissolved in 50 ml of refluxing toluene. and the solution was filtered, concentrated to 25 ml . and cooted to $-10^{\circ} \mathrm{C}$ to give a precipitate. This procedure was repeated once more, to give orange crsstalline IHC ($0.5 \mathrm{~g} .32 \%$), which was recrystallized as the $\frac{1}{\mathrm{CH}_{2} \mathrm{Cl}_{2}}$ solvate from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ hexane.

A mixture of the complex cis,mer- $\left[\mathrm{MnBr}(\mathrm{CO})_{2}(\mathrm{dppm}-\mathrm{PY})(\mathrm{dppm}-\mathrm{P})\right](0.50 \mathrm{~g}$. $0.521 \mathrm{mmol}) \mathrm{TlClO}_{4}(0.2 \mathrm{~g} .0 .658 \mathrm{mmol})$, and NCMe (30 ml) was stirred for 2 h at room temperature and then filtered (Care: The $\mathrm{TlClO}_{\text {, is soluble in } \mathrm{MeCN} \text {). The }}$ filtrate was dried in vacuo and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$. The extract was filtered then evaporated quickly in vacuo. The resulting yellow solid was washed twice with diethyl ether (30 ml) and dried in vacuo ($0.49 \mathrm{~g} .92 \%$). The molar conductivity of a $5 \times 10^{-4} \mathrm{M}$ acetone solution was $119 \Omega^{* 1} \mathrm{~cm}^{2}$ mol

Preparation of trans-/MnXICO)(dppm-PP') 1 (IV)
A mixture of cis-[$\left.\mathrm{Mn}\left(\mathrm{CO}_{2}\right)_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right](0.306 \mathrm{~g} .0 .312 \mathrm{mmol})$ and KX $(2.5 \times 0.312 \mathrm{mmol})$ and 18 -Crown- $6(3 \times 0.312 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ at $-15^{\circ} \mathrm{C}$ was irradiated with UV light until the $\nu(C O)$ bands of the starting complex were no longer present in the IR spectrum of the mixture. The solvent was evaporated in vacuo, then the residue was washed with water $(2 \times 30 \mathrm{ml})$ and redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. concentrated, diluted with hexane. and concentrated until precipitation began. The first precipitate was filtered off and discarded, and the remaining solution was cooled to - $10^{\circ} \mathrm{C}$ to give a red crystalline solid, which was washed with hexane. The yield ranged from $40^{\circ}(X-B r)$ to 51% ($\mathrm{X}=\mathrm{NCS}$)

Preparation of trans- $\left[\mathrm{Mn}\left(\mathrm{NCMen(CO)(dppm-PP}^{\prime}\right), / / \mathrm{ClO}_{4} /\right]$
The salt cis- $\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\text { dppm- } \mathrm{PP}^{\prime}\right)_{2} \Pi_{\mathrm{ClO}}^{4} 4\right](0.306 \mathrm{~g} .0 .312 \mathrm{mmol})$ was irradiated with UV light in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{ml})$ at $-15^{\circ} \mathrm{C}$ until the $n(\mathrm{CO})$ bands of the starting
complex were no longer present in the IR spectrum of the mixture. The solvent was evaporated in vacuo and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was filtered, diluted with hexane (10 ml), concentrated, and cooled to $-10^{\circ} \mathrm{C}$, to give a red crystalline solid $(0.127 \mathrm{~g}, 41 \%)$.

Preparation of trans-[Mn(NCS)(CO)(dppm-PP') $\left.{ }_{2}\right]$
The complex cis,mer-[Mn(NCS)(CO) $\left.{ }_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)(\mathrm{dppm}-\mathrm{P})\right](0.15 \mathrm{~g}, 0.156 \mathrm{mmol})$ was irradiated with UV light in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ at $-15^{\circ} \mathrm{C}$ until the IR spectrum of the solution no longer showed the $\nu(\mathrm{CO})$ bands of the starting complex. The solution was then filtered and the filtrate evaporated in vacuo. The residue was washed with hexane ($2 \times 30 \mathrm{ml}$) to leave an orange solid $(0.117 \mathrm{~g}, 82 \%)$. The other complexes III likewise gave IV, but in yields of ca. 30%.

Structure determination of cis-[Mn(CO) $\left.2_{2}\left(d p p m-\mathrm{PP}^{\prime}\right)_{2}\right] \mathrm{Br} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}$
Crystal data: $\mathrm{C}_{52} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{P}_{4} \mathrm{Mn} \cdot \mathrm{Br} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}, \quad F W=965.7$, monoclinic, a $20.027(3), b 13.326(2), c 36.876(4) \AA, \beta 99.46(2)^{n}, V 9708(4) \AA^{3}, C 2 / c, D_{\mathrm{x}} 1.321 \mathrm{~g}$ $\mathrm{cm}^{-3}, Z=8, F(000)=3962.7, \lambda\left(\mathrm{Mo}-K_{\alpha}\right) 0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right) 13.29 \mathrm{~cm}^{-1}$. Room temperature.

A yellow tabular crystal ($0.1 \times 0.2 \times 0.2 \mathrm{~mm}$) was selected and mounted on a Philips PW-1100 four circle diffractometer. The unit cell parameters were determined from 25 reflections ($4 \leqslant \theta \leqslant 9^{\circ}$) and refined by least squares. Intensities were collected with graphite monochromated $\mathrm{Mo}-K_{\alpha}$ radiation, using the ω-scan technique (scan width 1°, scan speed $0.03^{\circ} \mathrm{s}^{-1}$). Three intensities were measured each 2 h in orientation and intensity checks, and no significant variations were observed. 1969 intensities were measured in the range $2 \leqslant \theta \leqslant 24.5^{\circ}$ and 1931 were taken as observed by application of the condition $I \geqslant 2.5 \sigma(I)$. Lorentz-polarization, but no absorption corrections were made.

The structure was solved by direct methods, using the MULTAN system of computer programs [18]. An E-map computed from the set of phases with the highest combined figure of merit revealed the positions of the Mn and P atoms. The disordered Br atom, 22 C and the O atoms were located using the DIRDIF system [19] and the remaining atoms from successive difference synthesis. The structure was refined isotropically and anisotropically by full-matrix least-squares method, using the SHELX76 computer program [20]; f, f^{\prime} and $f^{\prime \prime}$ were taken from International Tables of X-Ray Crystallography [21]. The function minimized was $w\left\|F_{\mathrm{o}}|-| F_{\mathrm{c}}\right\|^{2}$, where $w=\left(\sigma^{2}\left(F_{\mathrm{o}}\right)+0.098\left|F_{\mathrm{o}}\right|^{2}\right)^{-1}$. After three isotropic cycles of refinement a subsequent difference synthesis showed a peak which we assumed to be a water moleculc with an occupancy factor of 0.5 . After the anisotropic cycles we refined the occupancy factors for the disordered atoms, obtaining $0.50(1)$ for both Br sites and $0.38(3)$ for the water molecule. The final R value was $0.072\left(R_{\mathrm{w}}=0.076\right)$ for all observed reflections.

Structure determination of trans-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}\left(d p p m-\mathrm{PP}^{\prime}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right] \cdot \frac{1}{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Crystal data: $\mathrm{C}_{52} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{P}_{4} \mathrm{Mn} \cdot \mathrm{ClO}_{4} \cdot \frac{1}{2} \mathrm{CH}_{2} \mathrm{Cl}_{2} . F W=1021.7$, orthorhombic, a $22.567(4), b 19.500(3), c 11.473(3) \AA, V 5049(3) \AA^{3}, P n 2_{1} a, D_{\mathrm{x}} 1.344 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4$, $F(000)=2108, \lambda\left(\mathrm{Mo}-K_{\alpha}\right) 0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right) 5.56 \mathrm{~cm}^{-1}, 288 \mathrm{~K}$.

A prismatic crystal $(0.1 \times 0.1 \times 0.15 \mathrm{~mm})$ was selected and mounted on a Philips four-circle diffractometer. Unit-cell parameters were determined from 25 reflections
$\left(4 \leqslant \theta \leqslant 12^{\circ}\right)$ and refined by least-squares. Intensities were collected with graphitemonochromated Mo- K_{a} radiation, using the ω-scan technique. scan width 0.8°. scan speed $0.03^{\circ} \mathrm{s}^{-1} .3224$ reflections were measured in the range $2 \leqslant \theta \leqslant 24.5^{\circ}$ and 3018 were taken as observed by application of the condition $I \geq 2.50(I)$. Three reflections were measured every 2 h in orientation and intensity checks, and no significant decay was observed. Lorentz-polarization, but no absorption corrections were made. The Mn atom was located from a Patterson synthesis and refined by full-matrix least-squares method using the SHELX76 computer program. The function minimized was $w\left\|F_{n}|-| F_{c}\right\|^{2}$, where $w=\sigma^{*}\left(F_{n}\right)$. The positions of the H atoms were calculated and refined with an overall isotropic temperature factor and the remaining atoms were refined anisotropically. The final R factor was 0.065 ($R_{\mathrm{w}}=0.066$) for all observed reflections.

For both structures complete lists of bond lengths and angles and tables of thermal parameters and structure factors are available from the authors.

Acknowledgement

We thank the Spanish CAICYT for financial support and the University of Barcelona for a Grant.

References

1 G.A. Carriedo. V. Riera and J. Santamaria, J. Organomet. Chem., 234 (1982) 175
2 R.J. Puddephatt, Chem. Soc. Rev., 12 (1983) 99
3 G.A. Carriedo, J.B. Parra Soto. V. Riera X. Solans and C. Miravitles, I. Organomet Chem. 297 (1985) 193

4 G.A. Carriedo, M.C. Crespo. V. Riera. M.G. Sanchez. M.I. Valin. D. Moreras and X. Solan. J. Organomet. Chem.. 302 (1986) 47.
5 R.J. McKinney. C.B. Knobler. B.T. Haie and H.D. Kaesz. I. Amer. Chem. Sow... 99 (1977) 2988 and references therein
6 M.J. Wonkulich, J.L. Atwood, L. Canada and J.D. Atwood. Organometallics. 419851867.
7 H.J. Plastas. J.M. Stewart and S.O. Grim. Inorg. Chem., 12 (1973) 265.
8 F.A. Cotton, D.J. Darensbourg. S. Klein and B.W.S. Kolthammer, Inorg (hem, 21 (1982) 2661.
9 D.L. Kepert, Prog. Inorg. Chem.. 23 (1977) 1.
10 D.J. Darensbourg and R.L. Gray, Inorg. Chem., 23 (1984) 2993 and references theren.
11 A.S. Marynick. S. Askari and D.F. Nickerson. Inorg. Chem. 24 (1085) 868: D. MP. Mingos. J. Organomet. Chem., 179 (1979) 629
12 S.W. Carr. B.L. Shaw and M. Thornton-Pett. J. Chem. Soc., Daton Trans. (108S) 2131.
3 F.J. Garcia Alonso. V. Riera and M.J. Misas, Trans. Met. Chem., 10 (1982) 19.
4 R.H. Reimann and E. Singleton. J. Organomet. Chen.. 38 (1972) 113
5 P.G. Jones. Chem. Brit.. 17 (1981) 222.
16 M.H. Quick and R.J. Angelici, Inorg. Synt., 19 (1979) 161
7 Gmelins Handbuch Der Anorganischen Chemie, "Thallium", Vol. 38 (1940), Pp. 990 and 394.
18 P. Main. S.L. Fiske. S.E. Hult. L. Lessinger, G. Germain. IP. Declera and M.M.G. Wolfson, MULTAN. An automatic system of computer programs for cryatal structure determination from X-Ray diffraction data. Univ, of York, England and Univ, of Louvain. Belgium (1980)
19 P.T. Beurskens, W.P. Bosman. H.N. Doesburg, R D. Gould. Th.E. Van Der Hark. P.A.J. Prick. J.H. Nordik. G. Beurskens and V. Parthasarati. DIRDIF. An autonatio procedure for phase extension and refinement of difference structure factors. Technical Rep. 1981/2. Orustalography Lath. Toernooiveld; Nijmegen. The Netherlands (1981).
20 G.M. Sheldrick, SHELX. A computer progran for crysal structure detemmanom, Gats of Cambridge. England (1976).
21 International Tables for X-Ray Crystallography, Vol. IV. Birmingham Kynoch Press, 1974. pp. $99-102$ and 150 .

[^0]: * The salt cis $\left[\mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)_{2} \|[\mathrm{Br}]\right.$, prepared as described in ref. 1. was cyystallized form $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane as the $1 / 3$ hydrate. Ohviously the water (0.6% ty weight) came from incompletely dried solvents.

[^1]: ${ }^{a}$ Calculated from the data in ref. 9 , using the experimentally determined normalized bite, $b 1.15 \AA$.
 ${ }^{b}$ idem with $b 1.19$ A.

[^2]: * Clearly the use of the thallous salts for the preparation of CN or NCS carbonyl complexes has advantages over the previous method employing $\mathrm{XAg}(\mathrm{X}=\mathrm{CN}$ or NCS$)[4]$. The vields reported for the preparation of cis,cis- $\left.\left[\mathrm{MnX}(\mathrm{CO})_{2}\left(\mathrm{dppm}-\mathrm{PP}{ }^{\prime}\right) \mathrm{POPh}_{3}\right)_{3}\right]$ by use of AgX can. however be improved by treating the reaction mixture with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{\text {, }}$ to remove the excess of cordinated silver.
 ** The compound IHC had to be separated from fac- $\left.[\mathrm{MnllCO})_{3}(\mathrm{dppnt}-\mathrm{PP})\right]$ and foc-$\left[\mathrm{MnH}(\mathrm{CO})_{3}\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)\right]$ formed in the reaction.

[^3]: ${ }^{a}$ With decomposition. ${ }^{b} \operatorname{In} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. ${ }^{c}$ It shows a sharp signal at $1.13 \delta(\mathrm{~s}, 3 \mathrm{H})$ in the ${ }^{l} \mathrm{H}$ NMR. ${ }^{d}$ It transforms slowly into the cis-[$\left.\mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{dppm}-\mathrm{PP})_{2}\right] C l O_{4}$.

